首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:当χ>0时,χ2>(1+χ)ln2(1+χ).
证明:当χ>0时,χ2>(1+χ)ln2(1+χ).
admin
2019-06-28
62
问题
证明:当χ>0时,χ
2
>(1+χ)ln
2
(1+χ).
选项
答案
令f(χ)=χ
2
-(1+χ)ln
2
(1+χ),f(0)=0; f′(χ)=2χ-ln
2
(1+χ)-2ln(1+χ),f′(0)=0; f′(χ)=2-[*]>0(χ>0), 由[*]得f′(χ)>0(χ>0); 由[*]得f(χ)>0(χ>0), 即χ
2
>(1+χ)ln
2
(1+χ)(χ>0).
解析
转载请注明原文地址:https://kaotiyun.com/show/h4V4777K
0
考研数学二
相关试题推荐
设f(x)=∫x-12e-y2dy,计算I=∫13f(x)dx。
已知曲线L的方程。过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
设无界区域G位于曲线y=(e≤x<+∞)下方,x轴上方,则G绕x轴旋转一周所得空间区域的体积为_________。
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
计算二重积分I=ydxdy,其中D是由x轴,y轴与曲线=1所围成的区域,a>0,b>0。
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用上问的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明结论。
A、0。B、6。C、36。D、∞。C方法一:凑成已知极限。(由于1-cosx~1/2x31-cos(6x)~1/2(6x)2)所以=36+0=36。方法二:根据极限与无穷小量的关系,由已知极限式令从而sin6x+xf(x)=a(x)
设n为正整数,F(x)=∫1nxe-t3dt+∫ee(n+1)xdt.(I)证明对于给定的n,F(x)有且仅有1个(实)零点,并且是正的,记该零点为an;(Ⅱ)证明{an}随n的增加而严格单调减少且=0.
随机试题
某公司2011年实现销售收入,5000万元。公司产品质量保证合同条款规定,在产品售出后一年内公司负责免费保修。根据以往的产品维修经验,小质量问题导致的修理费用预计为销售收入的1%;大质量问题导致的维修费用预计为销售收入的2%。2011年度出售的产品中估计8
有一奶牛场的奶牛在某年冬季陆续发病,体温升高达41℃以上,精神极度沉郁、拒食、流泪、咳嗽,流鼻液,呈黏稠脓性,鼻黏膜高度充血,有浅溃疡,鼻翼及鼻镜高度炎性充血、潮红,呈红色。炎性渗出物阻塞鼻腔而呼吸困难。病牛常张口呼吸,呼气中常有臭味。有的病牛出现带血的下
下列合同中,无须进行登记备案的合同是:()。
广义的信贷指一切以实现承诺为条件的价值运动形式,它包括()。
现代科学技术既高度分化,又高度综合,主要趋势是由分化到综合。()
给定材料1.城镇化的直接表现形式就是农村人口向城镇集中,在此过程中农村人口比重减少,农民成为产业工人或以其他方式成为城市居民,这也是促进产业结构、就业结构以及生产、生活方式等变化的重要因素。产业发展,是城镇化演进的重要基础。随着人口向城镇集中,
以下属于加德纳智力多元理论的智力成分有()。
根据上面的条件,以下哪一项必定为真?()以下每名患者都可以由李医生负责治疗,除了:()
犹太人又称【1】人和以色列人,其语言汉语名之曰【2】语。犹太民族创立了并一直信奉犹太教。有史料证明,犹太人和犹太教最晚于公元12世纪已经来到中国,中国人说犹太人“名其教为一赐乐业教”,当时的音译“一赐乐业”就是后来和现在的【3】,此音译还兼有“天帝赐予安居
设n为正整数,利用已知公式,In=,其中求下列积分:(Ⅰ)Jn=sinnxcosnxdx;(Ⅱ)Jn=(x2)ndx.
最新回复
(
0
)