首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=[一1,1,a,4]T,α2=[-2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的3个不同特征值对应的特征向量,则n的取值范围为 ( )
已知α1=[一1,1,a,4]T,α2=[-2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的3个不同特征值对应的特征向量,则n的取值范围为 ( )
admin
2018-09-25
29
问题
已知α
1
=[一1,1,a,4]
T
,α
2
=[-2,1,5,a]
T
,α
3
=[a,2,10,1]
T
是4阶方阵A的3个不同特征值对应的特征向量,则n的取值范围为 ( )
选项
A、a≠5
B、a≠-4
C、a≠-3
D、a≠-3且a≠-4
答案
A
解析
α
1
,α
2
,α
3
是3个不同特征值对应的特征向量,必线性无关,由
知a≠5.故应选A.
转载请注明原文地址:https://kaotiyun.com/show/keg4777K
0
考研数学一
相关试题推荐
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
已知A=,若A*B(A*)*=8A-1B+12E,①求矩阵B.
设f(x)在[-2,2]上有连续的导数,且f(0)=0,F(x)=f(x+t)dt,证明级数绝对收敛.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
已知α1=(1,一1,1)T,α2=(1,t,一1)T,α3=(t,1,2)T,β=(4,t2,一4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
若αi1,αi2,…,αir与αj1,αj2,…,αjt都是α1,α2,…,αs的极大线性无关组,则r=t.
设(Ⅰ)求f′(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令xn=,考察f′(x0)是正的还是负的,n为非零整数;(Ⅳ)证明:对δ>0,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
已知A,B均是3阶非零矩阵,且A2=A,B2=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
随机试题
学前教育有托儿所及幼儿园,小学之后有中学及大学,并且在各级学校之间形成一种有序的组织。这主要体现了现代学校教育所具有的特征是()。
糖尿病肾病最早出现的临床表现,也是筛选早期糖尿病肾病的主要指标是()
A.交感神经B.副交感神经C.运动神经D.传入神经E.传出神经当动物遇到各种紧急情况时,()系统的活动明显增强
第5胸椎棘突下旁开1.5寸的腧穴是第3胸椎棘突下旁升1.5寸的腧穴是
多巴胺的作用为( )。
【背景资料】某工贸集团决定新建一机械制造厂,通过招标方式与市建工集团安装公司签订了工程施工合同。因该安装公司没有能力完成土建工程施工,经业主同意,将基础工程、屋面工程和装修工程分包给了市建工集团星鼎公司。开工日期为2011年5月18日,合同工期67天。施
银行间债券市场上回购业务的类型包括()。Ⅰ.质押式回购业务Ⅱ.买断式回购业务Ⅲ.开放式回购业务Ⅳ.抵押式回购业务
下列各项中,不属于事业部制组织结构优点的有()。
我国重要的主体公园包括()。
求
最新回复
(
0
)