首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I):α1,α2,α3 ;(Ⅱ):α1,α2,α3 ,α4;(Ⅲ):α1,α2,α3 ,α5如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4,证明向量组α1,α2,α3,α5—α4的秩为4.
已知向量组(I):α1,α2,α3 ;(Ⅱ):α1,α2,α3 ,α4;(Ⅲ):α1,α2,α3 ,α5如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4,证明向量组α1,α2,α3,α5—α4的秩为4.
admin
2019-05-10
36
问题
已知向量组(I):α
1
,α
2
,α
3
;(Ⅱ):α
1
,α
2
,α
3
,α
4
;(Ⅲ):α
1
,α
2
,α
3
,α
5
如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4,证明向量组α
1
,α
2
,α
3
,α
5
—α
4
的秩为4.
选项
答案
可用初等列变换证明,还可利用两向量组等价必等秩的结论证之. 转化为矩阵证明.设A=[α
1
,α
2
,α
3
,α
5
],B=[α
1
,α
2
,α
3
,α
5
一α
4
],注意到α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关.由命题2.3.1.1知,α
4
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,则 B=[α
1
,α
2
,α
3
,α
5
一α
4
]=[α
1
,α
2
,α
3
,α
5
一λ
1
α
1
—λ
2
α
2
一λ
3
α
3
] [*][α
1
,α
2
,α
3
,α
5
]=A. 因而矩阵B与A等价,故秩(B)=秩(A)=4,即α
1
,α
2
,α
3
,α
5
一α
4
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/ljV4777K
0
考研数学二
相关试题推荐
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=,Q=.(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设A=,若齐次方程组AX=0的任一非零解均可用α线性表示,则a=().
设α1,α2,…,αs为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αs线性无关.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
随机试题
Formanypeopletoday,readingisnolongerrelaxation.Tokeepuptheirworktheymustreadletters,reports,tradepublication
要素饮食可能产生的代谢方面的合并症是
薏苡仁的功效是
女性,20岁。右上前牙长期咀嚼不适,近半年牙体变色。两年前曾做过正畸治疗。口腔检查:牙体变色,无明显龋损及其他牙体硬组织病变。叩诊(+),松动I°,牙髓活力电测验(-),牙周检查(-)。X线片示:根尖有圆形透影区,边界清楚,有一圈由致密骨组成的阻射白线围绕
某设备监理单位承担了一个钢铁企业扩建项目的设备安装工程监理任务。在开始监理工作之前,该设备监理单位为这次任务做了充分的准备,包括挑选总监理工程师、成立设备监理机构、收集有关资料以及编制监理规划。在准备过程中,总监理工程师发现一些监理人员对本应掌握的项目目标
标志线复划时,必须与原线重合,横向允许偏差为()。
一旦决策失误,就将贻患无穷的领导方式的行政领导的类型是()。
多边贸易体系
A、 B、 C、 D、 B回归测试有两种:①一经发现并改正了程序中隐藏的缺陷,然后再重新执行以前发现这个缺陷的测试,看这个缺陷是否重现。②当对发现的缺陷进行修改之后,执行一系列基准测试,以确认程序的修改没有对
WherewilltheHongKongComicsFestivalbeheld?ItwillbeheldatHongKongConvention&Exhibition______.Whoarethe
最新回复
(
0
)