首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵.若A3=O,则( ).
[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵.若A3=O,则( ).
admin
2019-04-28
27
问题
[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵.若A
3
=O,则( ).
选项
A、E—A不可逆,E+A不可逆
B、E—A不可逆,E+A可逆
C、E—A可逆,E+A可逆
D、E—A可逆,E+A不可逆
答案
C
解析
解一 由A
3
=O得E=E-A
3
=(E-A)(E+A+A
3
),
E=E+A
3
=(E+A)(E-A+A
3
).
由命题2.2.1.2知,E-A,E+A均可逆.仅(C)入选.
解二 因A
3
=0,即A为幂零矩阵,其n个特征值全部都等于零,则A的矩阵多项式f
1
(A)=E-A的n个特征值为f
1
(λ)|
λ=0
=(1-λ)|
λ=0
=1.因而|E-A|=1≠0,故E一A可逆.
A的另一个矩阵多项式f
2
(A)=E+A的n个特征值为f
2
(λ)|
λ=0
=(1+λ)|
λ=0
=1.故
|E+A|=1,所以E+A可逆.
转载请注明原文地址:https://kaotiyun.com/show/mzJ4777K
0
考研数学三
相关试题推荐
设幂级数的收敛半径分别为R1,R2,且R1<R2,设(an+bn)x1的收敛半径为R0,则有().
设为A*的特征向量,求A*的特征值λ及a,b,c和A对应的特征值μ.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A-2B|=______.
设f(x)=∫-1x(1一|t|)dt(x>-1),求曲线y=f(x)与x轴所围成的平面区域的面积.
求幂级数的收敛域.
已知二维随机变量(X,Y)的概率密度为(Ⅰ)试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立;(Ⅱ)令Z=X—Y,求Z的分布函数FZ(y)(z)与概率密度fZ(y)(z)。
袋中有a个白球与b个黑球。每次从袋中任取一个球,取出的球不再放回去,求第二次取出的球与第一次取出的球颜色相同的概率。
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
设总体X的概率密度函数为f(x;θ)=其中0<0<1是位置参数,c是常数,X1,X2,…,Xn是取自总体X的简单随机样本,则c=________;θ的矩估计量
随机试题
如果市场投资组合的实际收益率比预期收益率大15%,某证券的贝塔值为1,则证券的实际收益率比预期收益率大()。
《产品质量法》对企业及产品质量主要采取了()方面监督管理和激励引导措施。
设A=,则A-1=________.
检验交错齿三面刃铣刀螺旋齿槽槽形应在法向截面内测量。()
全身症状较重而局部症状不明显的直肠肛管周围脓肿是
A.MN/Cr>20:1B.BMN/Cr
甲服装公司与乙银行订立合同,约定甲公司向乙银行借款300万元,用于购买进口面料。同时,双方订立抵押合同,约定甲公司以其现有的以及将有的生产设备、原材料、产品为前述借款设立抵押。借款合同和抵押合同订立后,乙银行向甲公司发放了贷款,但未办理抵押登记。之后,根据
下列招标人行为中,属于排斥投标人或潜在投标人的是()。
下列不属于企业资产的是()。
设A是m×n阶矩阵,下列命题正确的是().
最新回复
(
0
)