首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵.若A3=O,则( ).
[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵.若A3=O,则( ).
admin
2019-04-28
47
问题
[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵.若A
3
=O,则( ).
选项
A、E—A不可逆,E+A不可逆
B、E—A不可逆,E+A可逆
C、E—A可逆,E+A可逆
D、E—A可逆,E+A不可逆
答案
C
解析
解一 由A
3
=O得E=E-A
3
=(E-A)(E+A+A
3
),
E=E+A
3
=(E+A)(E-A+A
3
).
由命题2.2.1.2知,E-A,E+A均可逆.仅(C)入选.
解二 因A
3
=0,即A为幂零矩阵,其n个特征值全部都等于零,则A的矩阵多项式f
1
(A)=E-A的n个特征值为f
1
(λ)|
λ=0
=(1-λ)|
λ=0
=1.因而|E-A|=1≠0,故E一A可逆.
A的另一个矩阵多项式f
2
(A)=E+A的n个特征值为f
2
(λ)|
λ=0
=(1+λ)|
λ=0
=1.故
|E+A|=1,所以E+A可逆.
转载请注明原文地址:https://kaotiyun.com/show/mzJ4777K
0
考研数学三
相关试题推荐
求矩阵A=的特征值与特征向量.
向量组α1,α2,…,αS线性无关的充要条件是().
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
设有幂级数.(1)求该幂级数的收敛域;(2)证明此幂级数满足微分方程y’’-y=-1;(3)求此幂级数的和函数.
级数().
设随机变量X的密度函数f(x)=且P{1<X<2}=P{2<X<3},则常数A=________;B=________;概率P{2<X<4}=________;分布函数F(x)=________。
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
a,b取何值时,方程组有解?
设A为n阶矩阵,若Ak+1≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
随机试题
界线
A.脑干网状结构B.视前区-下丘脑前部C.下丘脑视交叉上核D.下丘脑生物节律的控制中心多位于
A.术后出血B.伤口感染C.伤口裂开D.腰麻后头痛E.硬膜外麻醉的全脊麻易发生于术后1周的是
当承包人提出索赔要求后,监理工程师无权就()作出决定。
财政补贴应主要用于()。
导游带领旅游团泡温泉时,应提醒游客()。
人民警察内务建设的基本要求是培养()的优良警风。
不属于春秋时期制定成文法的活动是()。
结合材料回答问题:加强和创新社会治理,非常重要的一点就是推动社会治理重心下移。打赢疫情防控阻击战,更需要将防控工作落实到单位社区、居住社区、小区、院落、居民楼、每一个有人群的空间,直到每一户、每个人。在这次疫情防控中,很多地方都把干部派到社区、小
WherewasThorpe’sathletictalentdiscovered?
最新回复
(
0
)