首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组 求: 方程组(1)与(2)的公共解。
设四元齐次线性方程组 求: 方程组(1)与(2)的公共解。
admin
2019-03-21
48
问题
设四元齐次线性方程组
求:
方程组(1)与(2)的公共解。
选项
答案
设x=(x
1
,x
2
,x
3
,x
4
)
T
为(1)与(2)的公共解,用两种方法求x的一般表达式。 方法一:x是(1)与(2)的公共解,因此x是方程组(3)的解,方程组(3)为(1)与(2)合并的方程组,即 [*] 其系数矩阵 [*] 取其基础解系为(一1,1,2,1)
T
,于是(1)与(2)的公共解为x=k(一l,1,2,1)
T
,k∈R。 方法二:将(1)的通解x=(c
1
,一c
1
,c
2
,一c
2
)
T
代入(2)得c
2
=一2c
1
,这表明(1)的解中所有形如(c
1
,一c
1
,一2c
2
,一c
2
)
T
的解也是(2)的解,从而是(1)与(2)的公共解。因此(1)与(2)的公共解为x=k(一1,1,2,1)
T
,k∈R。
解析
转载请注明原文地址:https://kaotiyun.com/show/nGV4777K
0
考研数学二
相关试题推荐
设3阶矩阵A=(aij)的行列式|A|=2,设初等矩阵试分别计算PiA与APi,并求det(PiA)与det(APi)的值,i=1,2,3.
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
设f(x)在(a,b)内可导,且x0∈(a,b)使得f’(x)又f(x0)>0(<0),(如图4.13),求证:f(x)在(a,b)恰有两个零点.
在半径为R的圆的一切内接三角形中,求出其面积最大者.
已知y1*=xex+e2x,y2*=xex+e-x),y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解.试求其通解及该微分方程.
求由曲线F:x=a(t-sint),y=a(1-cost)(0≤t≤2π)及y=0所围图形绕Ox轴旋转所成立体的体积.
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
α=,求A的全部特征值,并证明A可以对角化.
随机试题
简述马克思主义中国化的两大理论成果及其关系。
健康促进的核心策略是
某新客户存入保证金100000元,在4月1日开仓买入大豆期货合约40手(10吨/手),成交价为4000元/吨。同一天该客户平仓卖出20手大豆合约,成交价为4030元/吨,当日结算价为4040元/吨,交易保证金比例为5%。4月2日,该客户将剩余20手大豆合约
耐克形象平面文案稿我,不要一刻钟的名声,我要一种生活。我不愿成为摄影镜头中的引人注目者,我要一种事业。我不想抓住所有我能拥有的,我想有选择地挑选最好的。我不想出售一个公司,我想创建一个。我不想和一个模特儿去约会。那么我的确想和一群模特儿去约会。
财政政策与货币政策一样,都是通过调控总需求来实现宏观经济目标的。()
甲、乙、丙3人今年的岁数和是113岁,当甲的岁数是乙的一半时,丙38岁;当丙的岁数是乙的2倍时,甲17岁。那么,乙今年()岁。
专业课
把社会和谐明确为中国特色社会主义的本质属性,有利于
阅读下列函数说明和C函数,将应填入(n)处的字句写在对应栏内。[说明]用链式存储结构实现的栈称为链栈。若链栈元素的数据类型为datatype,以LinkStack记链栈结构,其类型定义为:typedefstructnode{datat
Youwillhearaconversationbetweenthecompanyaccountantandherbossabouttheembezzlingofthecompany’smoneybyanother
最新回复
(
0
)