首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组 求: 方程组(1)与(2)的公共解。
设四元齐次线性方程组 求: 方程组(1)与(2)的公共解。
admin
2019-03-21
37
问题
设四元齐次线性方程组
求:
方程组(1)与(2)的公共解。
选项
答案
设x=(x
1
,x
2
,x
3
,x
4
)
T
为(1)与(2)的公共解,用两种方法求x的一般表达式。 方法一:x是(1)与(2)的公共解,因此x是方程组(3)的解,方程组(3)为(1)与(2)合并的方程组,即 [*] 其系数矩阵 [*] 取其基础解系为(一1,1,2,1)
T
,于是(1)与(2)的公共解为x=k(一l,1,2,1)
T
,k∈R。 方法二:将(1)的通解x=(c
1
,一c
1
,c
2
,一c
2
)
T
代入(2)得c
2
=一2c
1
,这表明(1)的解中所有形如(c
1
,一c
1
,一2c
2
,一c
2
)
T
的解也是(2)的解,从而是(1)与(2)的公共解。因此(1)与(2)的公共解为x=k(一1,1,2,1)
T
,k∈R。
解析
转载请注明原文地址:https://kaotiyun.com/show/nGV4777K
0
考研数学二
相关试题推荐
求证:当x>0时不等式(1+x)ln2(1+x)<x2成立.
设f(x)在(a,b)内可导,证明:x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单凋减少的充要条件是f(x0)+f’(x0)(x-x0)>f(x).(*)
判断下列结论是否正确?为什么?(Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0);(Ⅱ)若x∈(x0-δ,x0+δ,x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同的
设f(u)(u>0)有连续的二阶导数且z=满足方程=4(x2+y2),求f(u).
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
若函数f(x,y)对任意正实数t,满足f(tx,ty)=tnf(x,y),(7.12)称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βi都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
求此齐次方程组的一个基础解系和通解.
计算曲线y=ln(1一x2)上相应于0≤x≤的一端弧的长度.
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时,求f(0)与f(一1)的值;
随机试题
定量包装商品净含量的检验应依据__________进行。
女性,40岁,因患甲亢曾接受131I治疗,近2年来自觉乏力,畏寒,眼睑及下肢水肿,其水肿最可能的原因是
牛慢性蕨中毒的典型症状是
缺氧时,突出的临床表现是
尝试:成功
简述学生伤害事故的原因。
关于物理常识,下列说法正确的是:
假设某一经济最初的通货膨胀率为18%,如果衰退对通货膨胀的影响系数为:h=0.4。那么政府通过制造10%的衰退如何实现通货膨胀率不超过4%的目标?
Organicfoodisconsideredbetterthanmedicinetokeeppeoplespiritualfitness.
Whenyou’reeightmonthspregnant,it’shardtofindagoodinterviewsuit.Butafast-growingbellydidn’tstopNicoleYoung,3
最新回复
(
0
)