首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,x3)=4x22-3x32-4x1x3+4x1x2+8x2x3。 (Ⅰ)写出二次型的矩阵形式; (Ⅱ)用正交变换法求二次型的标准形,并写出正交阵。
设f(x1,x2,x3)=4x22-3x32-4x1x3+4x1x2+8x2x3。 (Ⅰ)写出二次型的矩阵形式; (Ⅱ)用正交变换法求二次型的标准形,并写出正交阵。
admin
2019-05-14
60
问题
设f(x
1
,x
2
,x
3
)=4x
2
2
-3x
3
2
-4x
1
x
3
+4x
1
x
2
+8x
2
x
3
。
(Ⅰ)写出二次型的矩阵形式;
(Ⅱ)用正交变换法求二次型的标准形,并写出正交阵。
选项
答案
(Ⅰ)令A=[*],则f(x
1
,x
2
,x
3
)=x
T
Ax。 (Ⅱ)由二次型矩阵的特征方程|λE-A|=[*]=(λ+6)(λ-1)(λ-6)=0, 解得特征值λ
1
=-6,λ
2
=1,λ
3
=6。 当λ
1
=-6时,由(-6E-A)x=0,得特征向量ξ
1
=[*] 当λ
2
=1时,由(E-A)x=0,得特征向量ξ
2
=[*] 当λ
3
=6时,由(6E-A)x=0,得特征向量ξ
3
=[*] 由施密特正交化方法得 [*] 令Q=[*],则Q
T
AQ=[*],于是有 f(x
1
,x
2
,x
3
)=x
T
Ax[*]-6y
1
2
+y
2
2
+6y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/oa04777K
0
考研数学一
相关试题推荐
设随机变量(X,Y)在区域D={(χ,y):0≤χ≤2,0≤y≤2}上服从均匀分布,求矩阵A=是正定矩阵的概率.
设F(u,v)有连续偏导数,且满足≠0,其中a,b,c≠0为常数,并有曲面S:F(cχ-az,cy-bz)=0,求证:(Ⅰ)曲面S上点处的法线总垂直于常向量;(Ⅱ)曲面S是以г:=0,为准线.母线平行于l=(a.b.c)的柱面.
=_______.
(Ⅰ)设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明λ=-1必是矩阵A与B的特征值;(Ⅱ)若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.
设A,B均为n阶可逆矩阵,且AB=B-1A-1,则r(E+AB)+r(E-AB)=_______.
设物体A从点(0,1)出发,以速度大小为常数v沿y轴正方向运动,物体B从点(-1,0)与A同时出发,其速度大小为2v,方向始终指向A,任意时刻B点的坐标(x,y),试建立物体B的运动轨迹(y作为x的函数)所满足的微分方程,并写出初始条件.
求引力:设有以O为心,r为半径,质量为M的均匀圆环,垂直圆面,=b,质点P的质量为m,试导出圆环对P点的引力公式F=
设有一批同型号产品,其次品率记为p.现有五位检验员分别从中随机抽取n件产品,检测后的次品数分别为1,2,2,3,2.(Ⅰ)若已知p=2.5%,求n的矩估计值(Ⅱ)若已知n=100,求p的极大似然估计值(Ⅲ)在情况(Ⅱ)下,检验员从该批产品中再随机检测
某装置的平均工作温度据制造f家称低于190℃.今从一个由16台装置构成的随机样本测得工作温度的平均值和标准差分别为195℃和8℃,根据这些数据能否支持f家结论?设α=0.05,并假定工作温度近似服从正态分布.
设n为正整数,f(x)=xn+x一1.证明:对于给定的n,f(x)在(0,+∞)内存在唯一的零点xn;
随机试题
机动车装用远光和近光双光束灯时以调整近光光束为主。()
违反隔离原则的是
项目管理组织结构调整优化的原因包括()
南方平原地区某一快速通道公路位于滨海区域,气候多雨,公路起讫桩号为K0+000~K30+000,线形平顺,双向六车道,无中央分隔带。行车道总宽度为B,每个车道宽度为3.75m。该公路为旧路改建,设计标高为公路中线位置。该工程采用柔性路面面层,基层采用半刚
将高级语言编写的程序翻译成机器语言程序,可采用的两种翻译方式是()。
以下西餐礼仪规范中,错误的有()。
凡年满六周岁的儿童,其父母或者其他法定监护人必须送其入学接受并完成义务教育。()
Lastweekwasthebeginningofstandardizedtesting"pre-season"atmyschool.【F1】It’snothingcomparedtowhathappensinthe
数据库系统的核心是()。
Thispartistotestyourabilitytodopracticalwriting.YouarerequiredtowriteaNoticeaccordingtotheinformationgiven
最新回复
(
0
)