首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.若极径OM0,OM与曲线L所围成的曲边扇形的面积值等于L上M0,M两点间弧长值的一半,求曲线L的极坐标方程.
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.若极径OM0,OM与曲线L所围成的曲边扇形的面积值等于L上M0,M两点间弧长值的一半,求曲线L的极坐标方程.
admin
2018-11-21
108
问题
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M
0
(2,0)为L上一定点.若极径OM
0
,OM与曲线L所围成的曲边扇形的面积值等于L上M
0
,M两点间弧长值的一半,求曲线L的极坐标方程.
选项
答案
曲边扇形的面积公式为S=[*]∫
0
θ
r
2
(θ)dθ,又弧微分ds=[*],于是由题设有 [*] (*) 两边对θ求导,即得r
2
(θ)=[*],所以r所满足的微分方程为 [*] (它与原方程等价,在(*)式中令θ=0等式自然成立,不必另加条件.) 注意到[*]=±θ+C为方程的通解,再由条件r(0)=2,可知C=一π/6,所以曲线L的方程为rsin([*]±θ)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/r4g4777K
0
考研数学一
相关试题推荐
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
设4元齐次线性方程组(Ⅰ)为而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,0+8)T.(1)求方程组(Ⅰ)的一个基础解系;(2)当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?若有,
解方程组
已知函数f(x)在区间[a,b]上连续,在(a,b)内f′(x)存在.设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b.试证:在区间(a,b)内至少存在一点ξ,使f″(ξ)=0.
在区间[0,+∞)内方程+sinx一1=0().
A,B,C均是n阶矩阵,且AB=O,AC+C=O.如秩(B)+秩(C)=n,证明A∽A,并求对角阵A.
(I)试证明:当0<x<π时,-sinx(Ⅱ)求级数的和.
设曲线y=ax2(x≥0,常数a>0)与曲线y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D。(Ⅰ)求D绕x轴旋转一周所成的旋转体的体积V(a);(Ⅱ)求a的值,使V(a)为最大。
设曲线L:f(x,y)=1(具有一阶连续偏导数)过第二象限内的点M和第四象限内的点N,Γ为L上从点M到点N的一段弧,则下列积分小于零的是()
设f(t)连续并满足f(t)=cos2t+f(s)sinsds,求f(t).
随机试题
女性,35岁,人工流产术后3个月阴道流血,HCG测定持续阳性。妇科检查:子宫如50天妊娠大小。肺部摄片见左上肺有圆形棉絮状阴影,直径2cm,考虑最可能的诊断为( )
艾滋病毒人侵入体后按临床表现.美国CDC将HIV感染分为
幻觉是指()
某一国的债务不合理,无法按期偿还,最终引发的危机是金融危机的哪种类型?()
某女生,17岁,很喜欢语文老师,并总从他的眼神、表情中读出爱她的信息,独处时她还能看到他的笑容和他对她温情求爱的语声,其余未见异常。这是()。
当整个行业日趋成熟时,行业成长变(),导致为了生存而产生的激烈竞争,利润()。
【2014年山东济宁.多选】《国家中长期教育改革和发展规划纲要(2010一2020年)》中提出,创新人才培养模式必须()。
确定政府职能的主要依据是()。
2010年8月,业务员齐某所在城市天气炎热,空调和冰箱市场紧缺。齐某声称他有门路以优惠价格购买质量优良的嘉意牌冰箱和空调,于是单位里有很多人委托齐某代买冰箱和空调,齐某按冰箱每台2400元向李某等10人预收了代购冰箱价款,按空调每台2600元向丁某等12人
集体谈判是指一名雇主、一些雇主或一个、几个雇主组织为一方,一个或数个工人为另一方,双方就确定工作条件和就业条件、调整雇主与工人之间的关系、调整雇主组织与工人组织之间的关系所进行的谈判。根据上述定义,下列不属于集体谈判的是:
最新回复
(
0
)