设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.

admin2018-05-23  27

问题 设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.

选项

答案(反证法)不妨设β≠0,令k1α1+k2α2+…+knαn+k0β=0,上式两边左乘βT得k1βTα1+k2βTα2+…+knβTαn+k0βTβ=0 因为α1,α2,…,αn与β正交,所以k0βTβ=0,即k0‖β‖2=0,从而k0=0,于是k1α1+k2α2+…+knαn=0,再由α1,α2,…,αn线性无关,得k1=k2=…kn=0,故α1,α2,…,αn,β线性无关,矛盾(因为当向量的个数大于向量的维数时向量组一定线性相关),所以β=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/rsg4777K
0

随机试题
最新回复(0)