首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+lα3,l≠0,证明α1,α2,α3线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+lα3,l≠0,证明α1,α2,α3线性无关.
admin
2019-03-12
91
问题
设A是n阶矩阵,α
1
,α
2
,α
3
是n维列向量,且α
1
≠0,Aα
1
=kα
1
,Aα
2
=lα
1
+kα
2
,Aα
3
=lα
2
+lα
3
,l≠0,证明α
1
,α
2
,α
3
线性无关.
选项
答案
(定义法,同乘) 若k
1
α
1
+k
2
α
2
+k
3
α
3
=0,用A-kE层左乘有 k
1
(A-kE)α
1
+k
2
(A-kE)α
2
+k
3
(A-kE)α
3
=0, 即 k
2
lα
1
+k
3
lα
2
=0, 亦即k
2
α
1
+k
3
α
2
=0. 再用A-kE左乘,可得k
3
α
1
=0. 由α
1
≠0,故必有k
3
=0,依次往上代人得k
2
=0及k
1
=0,所以α
1
,α
2
,α
3
线性无关.
解析
对k
1
α
1
+k
2
α
2
+k
3
α
3
=0,如何证明组合系数k
1
=k
2
=k
3
=0呢?要作恒等变形就应仔细分析已知条件,Aα
i
的条件其实就是
(A-kE)α
1
=0, (A-kE)α
2
=lα
1
, (A-kE)α
3
=lα
2
.
转载请注明原文地址:https://kaotiyun.com/show/tyP4777K
0
考研数学三
相关试题推荐
设曲线y=bx一x2与x轴所围平面图形被曲线y=ax2(a>0)分成面积相等的两部分,求a的值.
已知反常积分=_________.
设a>0,且函数f(x)在[a,b]上连续,在(a,b)内可导,试证:至少存在一点ξ∈b)使得f(ξ)一ξf’(ξ)=.
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收,由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求:随机检验一箱产品,它能通过验收的概率P;
下列各组矩阵相似的是().
①设α1,α2,…,αs和β1,β2,…,βt都是n维列向量组,记矩阵A=(α1,α2,…,αs),B=(β1,β2,…,βt)证明:存在矩阵C,使得AC=B的充分必要条件是r(α1,α2,…,αs;β1,β2,…,βt)=r(α1,α2,…,αs)
设A是5×4矩阵,r(A)=4,则下列命题中错误的为
设A为三阶实对称矩阵,为方程组AX=0的解,为方程组(2E-A)X=0的一个解,|E+A|=0,则A=________________________.
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A。
行列式=________。
随机试题
A.鼠疫耶尔森菌B.炭疽芽孢杆菌C.杜克嗜血杆菌D.枯草芽孢菌E.小肠结肠炎耶尔森菌()主要通过节肢动物叮咬引起疾病()
公园环境属于()。
Spacescientistsbelievethattheblackholeis______andwoulddraweverything,evenlight,towarditscenter.
中度慢性肝炎的特点是
狭窄骨盆对胎儿的影响是
行业和产业没有严格区别,任何一个行业都可以形成一个产业。()
河图市甲制衣公司受托加工制作时尚服装,双方签订的加工承揽合同中分别注明加工费50000元,委托方提供价值300000元的主要材料,受托方提供价值1000元的辅助材料。同时甲公司受某学校的委托为其定做一批校服,合同载明原材料价值800000元由甲公司提供,学
保险经纪人因过错给投保人、被保险人造成损失的,其不承担赔偿责任。()
关于仲裁庭的说法,错误的是()。
Duringthereignof______,WaleswasbroughtunderEnglishrule.
最新回复
(
0
)