首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+lα3,l≠0,证明α1,α2,α3线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+lα3,l≠0,证明α1,α2,α3线性无关.
admin
2019-03-12
71
问题
设A是n阶矩阵,α
1
,α
2
,α
3
是n维列向量,且α
1
≠0,Aα
1
=kα
1
,Aα
2
=lα
1
+kα
2
,Aα
3
=lα
2
+lα
3
,l≠0,证明α
1
,α
2
,α
3
线性无关.
选项
答案
(定义法,同乘) 若k
1
α
1
+k
2
α
2
+k
3
α
3
=0,用A-kE层左乘有 k
1
(A-kE)α
1
+k
2
(A-kE)α
2
+k
3
(A-kE)α
3
=0, 即 k
2
lα
1
+k
3
lα
2
=0, 亦即k
2
α
1
+k
3
α
2
=0. 再用A-kE左乘,可得k
3
α
1
=0. 由α
1
≠0,故必有k
3
=0,依次往上代人得k
2
=0及k
1
=0,所以α
1
,α
2
,α
3
线性无关.
解析
对k
1
α
1
+k
2
α
2
+k
3
α
3
=0,如何证明组合系数k
1
=k
2
=k
3
=0呢?要作恒等变形就应仔细分析已知条件,Aα
i
的条件其实就是
(A-kE)α
1
=0, (A-kE)α
2
=lα
1
, (A-kE)α
3
=lα
2
.
转载请注明原文地址:https://kaotiyun.com/show/tyP4777K
0
考研数学三
相关试题推荐
设函数f(x)=F(x)=∫—1xf(t)dt,则
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24—0.2P1,Q2=10—0.05P2;总成本函数C=35+40(Q1+Q2).试问:厂家如何确定两个市场的售价,才能使其获得的总
设区域D={(x,y)||x|+|y|≤1},D1为D在第一象限部分,f(x,y)在D上连续且f(x,y)≠0,则f(x,y)dσ成立的一个充分条件是
用泰勒公式确定下列无穷小量当x→0时关于x的无穷小阶数:(Ⅰ);(Ⅱ)∫0x(et一1—t)2dt.
已知A=(α1,α2,α3,α4),非齐次线性方程组Aχ=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T.(Ⅰ)令B=(α1,α2,α3),求Bχ=b的通解;(Ⅱ)令C=(α1,α2,α3,α4,b
设f(χ)在χ=0处连续,且=2,则曲线y=f(χ)在(0,f(0))处的切线方程为_______.
已知三元二次型xTAx的平方项系数都为0,α=(1,2,—1)T满足Aα=2α.①求xTAx的表达式.②求作正交变换x=Qy,把xTAx化为标准二次型。
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组。则()正确.
已知f(x)=ex2,f[φ(x)]=1-x且φ(x)的定义域为_____________________。
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(esin2x一1)ln(1+x2)低阶的无穷小,则正整数n等于()
随机试题
美国认知心理学家加德纳将人的智力分为音乐、数学、空间等八种智力,即“多元智能理论”。智力也就是人的认知能力,其核心是()。
混合血栓可见于
女性,49岁,眼睑浮肿,继则四肢及全身皆肿,来势迅速,多有恶寒、发热,肢节酸楚,小便不利等。伴咽喉红肿疼痛,舌质红,脉浮滑数。宜采用的治疗方法是
创面有大量坏死组织和脓液时,换药宜选用的外用药是
原告同时向两个以上有管辖权的人民法院提起诉讼的,由这些法院的共同上级法院指定管辖。()
在上市公司收购中,收购人持有的被收购的上市公司的股票,在法定期限内不得转让。这里的“法定期限”是收购行为()。
索贡巡行(东北师范大学2002年世界中古史真题)
下列关于数据与信息之间关系的描述中,不正确的是(14)。
______是输出照片图形时所采用的外部设备。
Frenchfries,washeddownwithapintofsoda,areafavoritepartoffast-foodlunchesanddinnersformillionsofAmericanyou
最新回复
(
0
)