首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明α,Aα,A2α线性无关。
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明α,Aα,A2α线性无关。
admin
2020-03-16
59
问题
已知A是三阶矩阵,α
i
(i=1,2,3)是三维非零列向量,令α=α
1
+α
2
+α
3
。若Aα
i
=iα
i
(i=1,2,3),证明α,Aα,A
2
α线性无关。
选项
答案
由Aα
i
=iα
i
(i=1,2,3),且α
i
(i=1,2,3)非零可知,α
1
,α
2
,α
3
是矩阵A的属于不同特征值的特征向量,故α
1
,α
2
,α
3
线性无关。又 Aα=α
1
+2α
2
+3α
3
,A
2
α=α
1
+4α
2
+9α
3
, 所以 (α,Aα,A
2
α)=(α
1
,α
2
,α
3
)[*]=(α
1
,α
2
,α
3
)P, 而矩阵P是范德蒙德行列式,故|P|=2≠0,所以α,Aα,A
2
α线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/uo84777K
0
考研数学二
相关试题推荐
设f(x)=∫-1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积。
证明下列不等式:
设,且f’’(x)>0,证明f(x)>x(x≠0)。
求解下列方程.
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x3+2x1x3—2x2x3。若二次型f的规范形为y12+y22,求a的值。
求微分方程=1+x+y+xy的通解.
设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(aretanξ)f’(ξ)=一1.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
[2018年]设平面区域D由曲线(0≤t≤2π)与x轴围成,计算二重积分(x+2y)dxdy.
随机试题
某施工单位中标一座铁路大桥(施工范围不含图中阴影部分),该桥跨越某三级通航河流,主跨为下承式钢梁,架桥机运梁车均可以在上面行驶。边跨为32m简支T形梁,要求现场制梁,采用公铁两用架桥机架梁,工期要求20个月,孔跨布置详见下图。
新生儿应用磺胺类药物易出现核黄疸的原因是;
可导致可摘局部义齿固位不良的原因如下,除了
患者男,30岁,大面积烧伤急性期,当病人允许进食时,为促进病人的营养,护士应该
根据公司法的相关理论,下列哪些观点正确的揭示了母子公司之间的关系?()在本案中,A有限责任公司作为B有限责任公司的母公司,其在B公司被宣告破产时享有的权利是:()。
()一般是商业银行、储蓄银行、大型投资公司等独立的金融机构,主要负责记录、报告并监督基金在证券市场和期货市场上的所有交易,保管基金资产,计算财产本息等。
假设江南公司拟一次性投资开发某农庄,预计该农庄能存续15年,但是前5年不会产生净收益,从第6年开始,每年的年末产生净收益5万元。在考虑资金时间价值的因素下,若农庄的投资报酬率为10%,该农庄给企业带来的累计收益为()元。已知(F/A,10%,9)
对以公允价值计量且其变动计入其他综合收益的权益工具投资,下列项目中错误的有()。
科学家曾这样想象:【】由带正电的电子与带负电的原子核组成原子,【】就是反原子,反原子则可构成反物质。倘若反物质与物质相遇就会爆炸成光辐射。这一“反物质假说”,在21世纪将逐步变成现实。2002年9月欧洲核子研究中心宣布,世界各地9个研究所的39位科
PalenquewasfoundedthreecenturiesagobyrunawayslavesinthejungleofColombia.Onthesurface,it【C1】______anyotherimpo
最新回复
(
0
)