首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证: (1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0; (2)存在η∈(a,b),使ηf(η)+f’(η)=0.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证: (1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0; (2)存在η∈(a,b),使ηf(η)+f’(η)=0.
admin
2018-09-25
68
问题
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证:
(1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0;
(2)存在η∈(a,b),使ηf(η)+f’(η)=0.
选项
答案
(1)设φ(x)=xf(x),则φ(x)在[a,b]上连续,在(ab)内可导,且φ(a)=φ(b)=0, 由罗尔定理得,存在ξ(a,b),使φ’(ξ)=0,即f(ξ()+ξ(f’(ξ()=0. (2)设[*],则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,由罗尔定理得,存在η∈(a,b),使 [*] 则有ηf(η)+f’(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/vSg4777K
0
考研数学一
相关试题推荐
设f(x)=sinax,-π≤x≤π,a>0,将其展开为以2π为周期的傅里叶级数.
判定下列级数的敛散性,当级数收敛时判定是条件收敛还是绝对收敛:
设y=y(x)在[0,+∞)内可导,且在x>0处的增量△y=y(x+△x)-y(x)满足△y(1+△y)=+α,其中当△x→0时α是△x的等价无穷小,又y(0)=2,求y(x).
求下列微分方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)3]dx;(Ⅱ)y2dx=(x+y2)dy;(Ⅲ)(3y-7x)dx+(7y-3x)dy=0;(Ⅳ)-3xy=xy2.
设A,B为相互独立的随机事件,0<P(A)=P<1,且A发生B不发生与B发生A不发生的概率相等.记随机变量试求X与Y的相关系数ρ.
设随机变量X~E(1),记Y=max(X,1),则E(Y)=
设函数u(x,y)有连续二阶偏导数,满足=0,又满足下列条件:u(x,2x)=x,u′x(x,2x)=x2(即u′x(x,y)|y=2x=x2),求u″xx(x,2x),u″xy(x,2x),u″yy(x,2x).
求证:方程lnx=dx在(0,+∞)内只有两个不同的实根.
曲线y=3x++1的渐近线方程为___________.
设f(u)(u>0)有连续的二阶导数且z=f(ex2-y2)满足方程=16(x2+y2)z,求f(u).
随机试题
支气管扩张病变可分为:
以下药物停药后会损害食管的有()。
工程各参建单位填写的工程档案应以( )等为依据。
()是指销售产品或者提供服务取得的收入,是项目运营期现金流入的主体。
根据《水利水电工程标准施工招标文件》,由于发包人责任引起的工期延误事件发生后,若发包人要求承包人修订的进度计划仍应保证工程按期完工,则由于采取赶工措施所增加的费用应由()承担。
在工作中,团结合作原则要求银行业从业人员应该树立()。
从科学史看,理论再伟大,也只有在特定的范围内才是正确的。标准模型虽然即将被证实,但其依然位于微观世界,无法解释宏观世界中的万有引力。《新科学家》撰文写道:“希格斯玻色子(也称为‘上帝粒子’)是标准模型的最后一块拼图,但我们知道,这个模型之外,还有其他的粒子
ItisgenerallyrecognizedintheworldthatthesecondGulfWarinIraqisacrucialtestofhigh-speedWeb.Fordecades,Ameri
假设EXAM.DOC文件夹存储在EXAM1文件夹中,EXAM2文件夹存储在EXAM1文件夹中,EXAM1文件夹存储在D盘的根文件夹中,当前文件夹为EXAM2,那么,正确描述EXAM.DOC文件的相对路径为(41)。
Asthemountainswerecoveredwitha______ofcloud,wecouldn’tseetheirtops.
最新回复
(
0
)