首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证: (1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0; (2)存在η∈(a,b),使ηf(η)+f’(η)=0.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证: (1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0; (2)存在η∈(a,b),使ηf(η)+f’(η)=0.
admin
2018-09-25
63
问题
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证:
(1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0;
(2)存在η∈(a,b),使ηf(η)+f’(η)=0.
选项
答案
(1)设φ(x)=xf(x),则φ(x)在[a,b]上连续,在(ab)内可导,且φ(a)=φ(b)=0, 由罗尔定理得,存在ξ(a,b),使φ’(ξ)=0,即f(ξ()+ξ(f’(ξ()=0. (2)设[*],则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,由罗尔定理得,存在η∈(a,b),使 [*] 则有ηf(η)+f’(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/vSg4777K
0
考研数学一
相关试题推荐
设曲线y=y(x)上点(x,y)处的切线垂直于此点与原点的连线,求曲线y=y(x)的方程.
设A2=A,A≠E(单位矩阵),证明:|A|=0.
设A是n阶反对称矩阵.若A可逆,则n必是偶数.
设函数f(x)在[0,π]上连续,且f(x)sinxdx=0,f(x)cosxdx=0.证明:在(0,π)内.f(x)至少有两个零点.
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
设随机变量X服从标准正态分布N(0,1),令Y=|X|,求Y的概率密度.
设A是n阶正定矩阵,α1,α2,…,αm是n维非零列向量,且Aαj=0(i≠j),证明α1,α2,…,αm线性无关.
设随机变量序列X1,X2,…,Xn,…相互独立,EXi=μi,DXi=2,i=1,2,…,则当n→∞时,(Xi一μi)依概率收敛于__________.
已知anxn半径R=R0>0,求证级数xn的收敛域为(-∞,+∞).
已知函数f(x)在区间[a,b]上连续,在(a,b)内f′(x)存在.设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b.试证:在区间(a,b)内至少存在一点ξ,使f″(ξ)=0.
随机试题
特发性血小板减少性紫癜的治疗顺序是
A.上热下寒B.表寒里热C.热证转化为寒证D.真寒假热E.真热假寒恶寒发热,无汗,头痛,身痛,气喘,烦躁,口渴,脉浮紧者,证属
甲房地产开发公司将一块以出让方式获得的土地使用权转让给乙房地产开发公司(以下简称乙公司),土地用途为住宅用地,3年后该项目建成,由丙物业管理公司实施物业管理。物业管理区域内物业管理的重要责任主体是()。
财政资源配置职能主要表现在( )。
弘扬求真务实的精神要做到()。
在微程序控制的计算机中,若要修改指令系统,只要()。
网络体系结构可以定义成
下列关于栈的叙述中,正确的是()。
ElNinoWhilesomeforecastingmethodshadlimitedsuccesspredictingthe1997ElNinoafewmonthsinadvance,theColumbia
Man:Hi,Susan.HaveyoufinishedreadingthebookProf.Johnsonrecommended?Woman:Oh,Ihaven’treaditthroughthewayI’dr
最新回复
(
0
)