设A是n阶矩阵,下列结论正确的是( ).

admin2018-05-23  39

问题 设A是n阶矩阵,下列结论正确的是(    ).

选项 A、A,B都不可逆的充分必要条件是AB不可逆
B、r(A)<n,r(B)<n的充分必要条件是r(AB)<n
C、AX=0与BX=0同解的充分必要条件是r(A)=r(B)
D、A~B的充分必要条件是λE—A~λE~B

答案D

解析 若A~B,则存在可逆矩阵P,使得P-1AP=B,于是P-1(λE—A)P=λE—P-1AP=λE—B,即λE—A~λE—B;反之,若λE—A~λE—B,即存在可逆矩阵P,使得P-1(λE—A)P=λE~B,整理得λE一P-1AP=λE—B,即P-1AP=B,即A~B,应选(D).
转载请注明原文地址:https://kaotiyun.com/show/vsg4777K
0

最新回复(0)