首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明: 存在ξ∈(0,3),使得f’’(ξ)一2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明: 存在ξ∈(0,3),使得f’’(ξ)一2f’(ξ)=0.
admin
2018-05-23
40
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).
证明:
存在ξ∈(0,3),使得f
’’
(ξ)一2f
’
(ξ)=0.
选项
答案
令φ(x)=e
-2x
f
’
(x),φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](0,3),使得φ
’
(ξ)=0, 而φ
’
(x)=e
-2x
[f
’’
(x)一2f
’
(x)]且e
-2x
≠0,故f
’’
(ξ)一2f
’
(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/xng4777K
0
考研数学一
相关试题推荐
设A为m×n实矩阵,E为n阶单位矩阵,矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设总体X的分布函数为其中θ是未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本.求EX与EX2;
设总体X的概率密度为其中参数θ(0<θ<1)未知,X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.判断是否为θ2的无偏估计量,并说明理由。
设矩阵相似.(1)求x和y的值;(2)求可逆矩阵P,使P—1AP=B.
设A为3阶实对称矩阵,A的秩为2,且(I)求A的所有特征值与特征向量.(II)求矩阵A.
已知二次型f(x1,x2,x3)=5x12+5x22+cx32一21x2+61x3—62x3的秩为2.(1)求参数c及此二次型对应矩阵的特征值.(2)指出方程f(x1,x2,x3)=1表示何种二次曲面.
设α为实n维非零列向量,αT表示α的转置.(1)证明:A=E一为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为税维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
设袋中有编号为1~N的N张卡片,其中N未知,现从中有放回地任取n张,所得号码为x1,x2,…,xn.(Ⅰ)求N的矩估计量,并计算概率;(Ⅱ)求N的最大似然估计量,并求的分布律.
设f(x)具有一阶连续导数,f(0)=0,且微分方程[xy(1+y)一f(x)y]dx+[f(x)+x2y]dy=0为全微分方程.(Ⅰ)求f(x);(Ⅱ)求该全微分方程的通解.
设f(x)在[0,+∞)上连续,0<a<b,且收敛,其中常数A>0.证明:
随机试题
某物质的清除率大于125ml/min.可以推测
如下哪项不是急性再生障碍性贫血早期突出的表现
急性肾炎最主要的治疗措施是()
某区法院在执行该市中级人民法院作出的调解书时,发现调解违反了合法原则,调解内容严重损害了第三方的利益,该基层法院应如何处理?()
以下关于船舶碰撞后责任承担的说法正确的有:()
简述尝试错误学习的基本规律。
单杠支撑后回环的动作难点是()。
学习是个体利用本身的智慧与理解力对情境及情境与自身关系的解答,而不是动作的积累或盲目的尝试。持这种观点的心理学家是()
张伟的所有课外作业都得了优,如果她的学期论文也得到优,即使不做课堂报告,她也能通过考试。不幸的是,她的学期论文没有得到优,所以她要想通过考试,就不得不做课堂报告了。上述的推理是有缺陷的.因为该论证:
Probabilityisthemathematicalstudyofthe________ofanevent’soccurrence.
最新回复
(
0
)