首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X,Y相互独立且都服从标准正态分布,令U=X2+Y2.求: (1)fU(u); (2)P{U>D(U)|U>E(U)).
设随机变量X,Y相互独立且都服从标准正态分布,令U=X2+Y2.求: (1)fU(u); (2)P{U>D(U)|U>E(U)).
admin
2019-08-28
41
问题
设随机变量X,Y相互独立且都服从标准正态分布,令U=X
2
+Y
2
.求:
(1)f
U
(u);
(2)P{U>D(U)|U>E(U)).
选项
答案
(1)因为X,Y相互独立且都服从标准正态分布,所以(X,Y)的联合密度函数为 f(x,y)=[*](-∞<x,y<+∞). Fu(u)=P(U≤u). 当u<0时,F
U
(u)=0; 当u≥0时,F
U
(u)=P(U≤u)=P(X
2
+Y
2
≤u) [*] 所以f
U
(u)=[*]即U服从参数为λ=[*]的指数分布. (2)E(U)=2,D(U)=4, P{U>D(U)|U>E(U))=P(U>4|U>2)=[*] 因为P(U>4)=1-P(U≤4)=1-(1-e
-2
)=e
-2
,P(U>2)=1-(1-e
-1
)=e
-1
, 所以P{U>D(U)|U>E(U))=e
-1
.
解析
转载请注明原文地址:https://kaotiyun.com/show/yeJ4777K
0
考研数学三
相关试题推荐
(2014年)设p(x)=a+bx+cx2+dx3.当x→0时,若p(x)一tanx是比x高阶的无穷小,则下列结论中错误的是()
(2015年)设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
设n元线性方程组Ax=b,其中证明行列式|A|=(n+1)an;
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_______.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:A2;
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为求矩阵A;
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
两家影院竞争1000名观众,每位观众随机地选择影院且互不影响.试用中心极限定理近似计算:每家影院最少应设多少个座位才能保证“因缺少座位而使观众离去”的概率不超过1%?(Ф(2.328)=0.9900)
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α
设二次方程x2—Xx+Y=0的两个根相互独立,且都在(0,2)上服从均匀分布,分别求X与Y的概率密度.
随机试题
生产中,应尽量采用先装后焊接的方法来增加结构的刚度,以控制焊接变形。
为降低胆红素浓度,防止或减轻核黄疸,简单而有效的方法是
用于疟疾病因性预防的首选药是选择性的解受体激动剂是
患者,男,35岁。缺失3个月,要求固定修复。如果近中倾斜,该牙用做固定桥基牙的最大障碍是
保税物流中心(B型)仓储面积,东部地区不低于()平方米,中西部不低于()平方米。
采用累计实际发生的合同成本占合同预计总成本的比例确定合同完工进度的,累计实际发生的合同成本包括的内容有()。
当领队与团内旅游者之间产生矛盾时,地陪的正确做法是()。
下列白酒中属于浓香型的有()。
上海某出版社与国外某出版公司在北京签订了一份著作权贸易合同,按规定应报()审核登记。
A、13million.B、7million.C、3million.D、30million.C
最新回复
(
0
)