首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设h(t)为三阶可导函数,u=h(xyz),h(1)=fxy"(0,0),h’(1)=fyx"(0,0),且满足 求u的表达式,其中
设h(t)为三阶可导函数,u=h(xyz),h(1)=fxy"(0,0),h’(1)=fyx"(0,0),且满足 求u的表达式,其中
admin
2018-09-20
33
问题
设h(t)为三阶可导函数,u=h(xyz),h(1)=f
xy
"(0,0),h’(1)=f
yx
"(0,0),且满足
求u的表达式,其中
选项
答案
u
x
’=yzh’(xyz),u
xy
"=zh’(xyz)+xyz
2
h"(xyz), u
xyz
"’=h’(xyz)+xyzh"(xyz)+2xyzh"(xyz)+x
2
y
2
z
2
h"’(xyz), 由题可得3xyzh"(xyz)+h’(xyz)=0,令xyz=t,得3th"(t)+h’(t)=0. 设v=h’(t),得3tv’+v=0,分离变量,得[*] 又f(x,0)=0,则易知f
x
’(0,0)=0,当(x,y)≠(0,0)时,有 [*] 于是f
x
’(0,y)=一y,所以f
xy
"(0,0)=一1,由对称性知f
yx
"(0,0)=1,所以h(1)=一1,h’(1)=1,从而[*] 故h(t)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zRW4777K
0
考研数学三
相关试题推荐
证明:aretanx=(x∈(-∞,+∞)).
设A是3阶矩阵,且有3个互相正交的特征向量,证明A是对称矩阵.
设闭区域D={(x,y)|x2+y2≤y,x≥0},又f(x,y)为D上的连续函数,且求f(x,y).
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:存在ξ∈(0,1)使得
设f(x)在(a,b)内二阶可导,且a<x1<x2<b.(I)若x∈(a,b)时f’’(x)>0,则对任何x∈(x1,x2)成立;(Ⅱ)若x∈(a,b)时f’’(x)<0,则对任何x∈(x2,x2)成立.
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于,x2∈[0,1],有
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f’’(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
设u=u(x,y)二阶连续可偏导,且,若u(x,3x)=x,ux’(x,3x)=x3,则uxy"(x,3x)=________.
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
(12年)设函数f(χ)=(eχ-1)(e2χ-2)…(enχ-n),其中n为正整数,则f′(0)=【】
随机试题
脊柱血管瘤多见于
拟诊应考虑哪项治疗最合理
患者李某,男,60岁,诊断为原发性肝癌,下列哪项检查指标最有参考价值
患者,女,8岁。壮热不恶寒3天,体温常午后升高,夜间高于白天,烦躁时有谵语,舌红绛,脉细数滑。宜首选
下列关于房地产投资分析中成本的表述中,正确的是()。[2006年考题]
国际标准化组织(ISO)结合实践经验及理论分析,用高度概括又易于理解的语言,总结的质量管理的原则包括()。
不少学校开展“校园明星”评选活动,这里所使用的德育方法是()。
()表示在一定时期内,一种商品的需求量的相对变化对于该商品价格相对运动的反应程度。
(1)我们要耐心教育孩子,不要_______他们的自尊心。(2)时至今日,语言文字的_______仍然存在混乱现象。(3)我仿佛窥见鲁迅先生丰富的精神世界,感受到他所具有的道德力量,相比之下,越发显出我自己的_______。填入画横线部分最恰
馆藏(collections)丰富的高校博物馆(universitymuseum)无疑是一座“宝藏”。但令人遗憾的是,这座宝藏一直很少受到关注。最近,北京的一些高校公开表示将向公众免费开放校内博物馆。这一举动为学术馆藏走近普通大众提供了一个良好的开端。但
最新回复
(
0
)