首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解.
admin
2018-05-25
50
问题
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又
且AB=O,求方程组AX=0的通解.
选项
答案
由AB=O得r(A)+r(B)≤3且r(A)≥1. (1)当k≠9时,因为r(B)=2,所以r(A)=1,方程组AX=0的基础解系含有两个线性无关的解向量,显然基础解系可取B的第1、3两列,故通解为 [*](k
1
,k
2
为任意常数); (2)当k=9时,r(B)=1,1≤r(A)≤2, 当r(A)=2时,方程组AX=0的通解为[*](C为任意常数); 当r(A)=1时,A的任意两行都成比例,不妨设a≠0, 由 [*] (k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/VEW4777K
0
考研数学三
相关试题推荐
若函数f(x)在(-∞,+∞)内满足关系式fˊ(x)=f(x),且f(0)=1.证明:f(x)=ex.
设f(x)=试确定常数a,b,c,使f(x)在x=0点处连续且可导.
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.(1)求方程yˊ+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
微分方程yˊ+ytanx=cosx的通解为y=_________.
设向量组α1=[a11,a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
已知矩阵相似.(1)求x与y;(2)求一个满足P-1AP=B的可逆矩阵P.
设A为n阶正定矩阵.证明:存在唯一正定矩阵H,使得A=H2.
随机试题
51.根据现行国家标准《建筑内部装修设计防火规范》(GB50222),下列装修装饰材料中,不属于其他装修装饰材料的是()。
无牙牙合患者修复前做牙槽嵴修整的主要目的是
产后10天,左乳胀痛发热。查体:体温38.7℃,左乳外上象限皮温度,红肿有压痛,肿块约5cmx5cm大小,中心有波动感。最恰当的治疗方法是
施工安全管理体系遵循PDCA循环模式运行,是一个( )。
一大型铁路工程招标要求投标企业具有铁路施工总承包特级资质,某具有铁路施工总承包一级资质施工企业(代号X)借用具有投标资格的A集团公司之名参与投标,并联合参与投标的B、C、D集团公司统一报价后A集团公司中标,X企业自行组织项目部进场施工并向A集团公司支付了一
导游员要做到有针对性的讲解,必须注意研究客人的心理,集中精力对客人的需求做出准确的判断,在讲解之前做到心中有数,有备而讲。()
民航规定出售儿童半价票的年龄为()。
在一个单CPU的计算机系统中,有两台外部设备R1、R2和三个进程P1、P2、P3。系统采用可剥夺式优先级的进程调度方案,且所有进程可以并行使用I/O设备,三个进程的优先级、使用设备的先后顺序和占用设备时间如下表所示:假设操作系统的开销忽略不计,三个进程
TheLandofDisneyPredictingthefutureisalwaysrisky.Butit’sprobablysafetosaythatatleastafewhistorianswill
A、Tomorrow.B、Today.C、Yesterday.D、Thedayaftertomorrow.A对话结尾部分女士说这样的优惠很具有吸引力,男士说这次促销活动明天就结束了。由此可见,促销的结束时间是明天。
最新回复
(
0
)