首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解.
admin
2018-05-25
63
问题
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又
且AB=O,求方程组AX=0的通解.
选项
答案
由AB=O得r(A)+r(B)≤3且r(A)≥1. (1)当k≠9时,因为r(B)=2,所以r(A)=1,方程组AX=0的基础解系含有两个线性无关的解向量,显然基础解系可取B的第1、3两列,故通解为 [*](k
1
,k
2
为任意常数); (2)当k=9时,r(B)=1,1≤r(A)≤2, 当r(A)=2时,方程组AX=0的通解为[*](C为任意常数); 当r(A)=1时,A的任意两行都成比例,不妨设a≠0, 由 [*] (k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/VEW4777K
0
考研数学三
相关试题推荐
计算(a>0是常数).
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.(1)求方程yˊ+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
设线性无关的函数y1(x),y2(x),y3(x)均是方程yˊˊ+p(x)yˊ+q(x)y=f(x)的解C1,C2是任意常数,则该方程的通解是()
设向量组α1=[a11,a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
已知α1=[1,2,-3,1]T,α2=[5,-5,a,11]T,α3=[1,-3,6,3]T,α4=[2,-1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4线性相关;(2)a为何值时,向量组α1,α2,α3,α4线性无关;(3)a
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅱ)等价.
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1-α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
随机试题
试述砂仁的药性、功用主治及使用注意。
引起肉毒杆菌食物中毒的主要食品是
甲乙丙丁是某普通合伙企业的合伙人,2012年3月1日该合伙企业欠王某10万元的债务,2012年5月1日李某得到合伙人的一致同意成为普通合伙人,同年9月,甲将自己在合伙企业中的全部财产份额转让给乙,甲退伙。下列说法错误的是?
在工程网络计划工期优化过程中,当出现两条独立的关键线路时,在考虑对质量和安全影响差别不大的基础上,应选择的压缩对象是分别在这两条关键线路上的两项()的工作组合。
与工程网络计划方法相比,横道图进度计划方法的缺点是不能()
在期货交易中,任何交易者必须按其所买入或卖出期货合约价值的一定比例交纳资金,这个比例通常在()。
中国银行业协会的日常办事机构为()。
“两角差的余弦公式”是高中数学必修4中的内容。“经历用向量的数量积推出两角差的余弦公式的过程,进一步体会向量方法的作用”请完成“两角差的余弦公式推导过程”教学设计中的下列任务(1)分析学生已有的知识基础;(2)确定学生学习的难点;
BeautyisbigbusinessinChina.Thecountry’scosmeticsmarketisworth$26billionayear,makingitthethird-biggestinthe
以下关于极限编程(XP)和原型法区别的描述中,错误的是(33)。
最新回复
(
0
)