首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设f(x)在[x0,x0+δ)((x0-δ,x0])连续,在(x0,x0+δ)(x0-δ,x0)可导,又f’(x)=A(f’(x)=A),求证:f’+(x0)=A(f’-(x0)=A). (Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x
(Ⅰ)设f(x)在[x0,x0+δ)((x0-δ,x0])连续,在(x0,x0+δ)(x0-δ,x0)可导,又f’(x)=A(f’(x)=A),求证:f’+(x0)=A(f’-(x0)=A). (Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x
admin
2018-06-15
25
问题
(Ⅰ)设f(x)在[x
0
,x
0
+δ)((x
0
-δ,x
0
])连续,在(x
0
,x
0
+δ)(x
0
-δ,x
0
)可导,又
f’(x)=A(
f’(x)=A),求证:f’
+
(x
0
)=A(f’
-
(x
0
)=A).
(Ⅱ)设f(x)在(x
0
-δ,x
0
+δ)连续,在(x
0
-δ,x
0
+δ)/{x
0
}可导,又
f’(x)=A,求证:f’(x
0
)=A.
(Ⅲ)设f(x)在(a,b)可导,x
0
∈(a,b)是f’(x)的间断点,求证:x=x
0
是f’(x)的第二类间断点.
选项
答案
(Ⅰ)f’
+
(x
0
) [*] =A.另一类似. (Ⅱ)由题(Ⅰ)[*]f’
+
(x
0
)=f’
-
(x
0
)=A[*]f’(x
0
)=A.或类似题(Ⅰ),直接证明 [*] (Ⅲ)即证[*]f’(x)中至少一个不ヨ.若它们均存在,[*]f’(x)=A
±
,由题(Ⅰ)[*]f’
±
(x
0
)=A
±
.因f(x)在x
0
可导[*]A
+
=A
-
=f’(x
0
)[*]f’(x)在x=x
0
连续,与已知矛盾.因此,x=x
0
是f’(x)的第二类间断点.
解析
转载请注明原文地址:https://kaotiyun.com/show/eHg4777K
0
考研数学一
相关试题推荐
设函数f(χ)在χ=1的某邻域内连续,且有=-4.(Ⅰ)求f(1),及f′(1);(Ⅱ)若又设f〞(1)存在,求f〞(1).
设有摆线L:(-π≤θ≤π),则L绕χ轴旋转一周所得旋转面的面积A=_______.
设总体X服从正态分布N(μ,1),X1,X2,…,X9是取自总体X的简单随机样本,要在显著性水平a=0.05下检验H0:μ=μ0=0,H1:μ≠0,如果选取拒绝域R={≥c}.(Ⅰ)求C的值;(Ⅱ)若样本观测值的均值
(Ⅰ)求累次积分J=(Ⅱ)设连续函数f(χ)满足f(χ)=1+∫χ1f(y)f(y-χ)dy,记I=∫01f(χ)dχ,求证:I=1+∫01f(y)dy∫0yf(y-χ)dχ,(Ⅲ)求出I的值.
设f(χ,y)为区域D内的函数,则下列结论中不正确的是
设事件A,B满足AB=,则下列结论中一定正确的是()
设y(x)是方程y(4)-y’’=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
将函数展开成x的幂级数,并指出其收敛区间.
设试证:对任意的常数λ>0,级数收敛.
随机试题
绘制海陆风示意图,并简要说明海陆风的形成原因。
女性,36岁。下肢浮肿3周,血压200/100mmHg,尿蛋白+++,红细胞15—20/HP,血Cr156μmol/L,血白蛋白34g/L。暂不考虑哪种治疗措施
猪传染性胸膜肺炎的病原体是()。
背景资料:某城市隧道工程项目,采用喷锚暗挖法施工,该工程施工项目部针对工程的特点,在施工组织设计的每一个环节抓住其关键,做出了最恰当的安排,并选择了合理有效的措施。在施工过程中,喷锚暗挖加固支护的方法采用小导管注浆措施,小导管注浆采用石
索赔文件包括()。
储蓄国债(电子式)与记账式国债相比,不同之处在于( )。
下列不属于教学模式内容的是()。
根据以下资料,回答下列问题。根据有关基础资料和国民经济核算方法,2014年上半年我国GDP初步核算结果如下:2013年上半年住宿和餐饮业实现的绝对额比农、林、牧、渔业实现的绝对额()亿元。
Amongtheraftofbooks,articles,jokes,romanticcomedies,self-helpguidesandotherwritingsdiscussingmarriage,somefamil
Aschoolisbeingaskedtoapologizetothefamilyofaboyitprosecutedfortruancy.Theboywas【C1】______ashaving"schoolp
最新回复
(
0
)