首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a,b,c为实数,求证:曲线y=ex与y=ax2+bx+c的交点不超过三个.
设a,b,c为实数,求证:曲线y=ex与y=ax2+bx+c的交点不超过三个.
admin
2018-11-21
38
问题
设a,b,c为实数,求证:曲线y=e
x
与y=ax
2
+bx+c的交点不超过三个.
选项
答案
令f(c)=e
x
一ax
2
—bx—c,那么问题等价于证明f(x)的零点不超过三个.假设结论不正确,则至少有四个点x
1
<x
2
<x
3
<x
4
,使得f(x
i
)=0,i=1,2,3,4. 由于f(x)在[x
1
,x
4
]上可导,由罗尔定理可知f’(x)在(x
1
,x
2
),(x
2
,x
3
),(x
3
,x
4
)内至少各有一个零点ξ
1
,ξ
2
,ξ
3
.又由于f’(x)在[ξ
1
,ξ
3
]上可导,由罗尔定理可知f"(x)在(ξ
1
,ξ
2
),(ξ
2
,ξ
3
)内至少各有一个零点η
1
,η
2
.同样地,由于f"(x)在[η
1
,η
2
]上可导,由罗尔定理可知f"’(x)在(η
1
,η
2
)内至少有一个零点ζ.因此至少存在一点ζ∈(一∞,+∞)使得f"’(ζ)=0,而f"’(x)=e
x
>(戈∈(一∞,+∞)),这就产生了矛盾.故f(x)的零点不超过三个.
解析
问题等价于f(x)=e
x
一ax
2
一bx—c的零点不超过三个.根据罗尔定理,可导函数的任何两个零点之间至少存在一个导函数的零点.因此本题需要用反证法.
转载请注明原文地址:https://kaotiyun.com/show/npg4777K
0
考研数学一
相关试题推荐
设X~B(3,p),Y~B(2,p),已知P(X≥1)=,则P(Y<1)=____________.
设某种器件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为20小时.在使用中当一个器件损坏后立即更换另一个新的器件,如此连续下去.已知每个器件进价为a元,试求在年计划中应为此器件做多少预算,才可以有95%的把握保证一年够用(假定一年按2000
设f(x)=若f(x)在点x=0处可导,则a=__________,b=__________.
设L为椭圆=1,其周长为π,则(2xy+3x2+5y2)ds=___________.
问满足方程一y″一2y′=0的哪一条积分曲线通过点(0,一3),在该点处有倾角为arctan6的切线且曲率为0?
曲面z—y—lnx+lnz=0与平面x+y一2z=1垂直的法线方程为__________.
已知(X,Y)在以点(0,0),(1,-1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX(x|y),fY|X(y|x);并问X与Y是否独立;(
设A=(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)>0,f(a)≥f(b),求证:f’(x)在(a,b)至少有两个零点.
证明:∫0sinnxcosnxdx=2-n∫0sinnxdx.
随机试题
屋面防水卷材平行屋脊的卷材搭接缝,其方向应()。
加热至60℃左右即易被破坏失效的药物是
______studentwithalittlecommonsenseshouldbeabletoanswerthequestion.
A.20周B.24周C.26周D.28周E.30周妊高征发生于妊娠后
某市建筑公司承接该市某化工厂综合楼工程的施工任务,该工程为5层底框架砖混结构,东西长39.9m,南北宽8.8m,建筑面积2250m2;采用十字交叉条形基础,其上布置底层框架。该公司为承揽该项施工任务,报价较低。因此,为降低成本,施工单位采用了一小厂提供的价
场依存型的学生的学业成绩一定会比场独立型的学生差。()
教育有法可依,但无定法可依。这说明教师劳动具有()。
下列被告(被申请人)负举证责任的是:
简述颜之推关于士大夫教育的思想。
A、 B、 C、 D、 D
最新回复
(
0
)